| 广告联系 | 繁体版 | 手机版 | 微信 | 微博 | 搜索:
欢迎您 游客 | 登录 | 免费注册 | 忘记了密码 | 社交账号注册或登录

首页

新闻资讯

论坛

温哥华地产

大温餐馆点评

温哥华汽车

温哥华教育

黄页/二手

旅游

"强烈反对"公司反华言论,姚顺宇宣布跳槽


请用微信 扫一扫 扫描上面的二维码,然后点击页面右上角的 ... 图标,然后点击 发送给朋友分享到朋友圈,谢谢!
Then it mainly comes down to AI or QC(quantum computing). Although I believe QC will become important in the future, my impression is the bottleneck now is mainly experimental platforms. Thus I choose AI, which is interestingly similar to physics research as follows:


于是主要就在人工智能和量子计算之间做选择。虽然我相信量子计算将来会变得重要,但我的印象是目前的瓶颈主要在实验平台。因此我选择了人工智能,有趣的是,它在以下方面与物理学研究相似:

How does working on AI feel as a physicist?


作为一名物理学家,从事人工智能的工作是什么感觉?

In some sense, it is similar to research on thermodynamics during the 17th century. Back then, people didn’t even know what was heat: in fact people still believed in Phlogiston theory. But this does not stop people from experimenting scientifically. For example, Boyle’s law tells the relationship between pressure and volume when temperature is fixed. Thus by designing experiments systematically, people still learnt enough ‘laws’, which guided the invention/study of heat engine that changed the word.



在某种意义上,这与 17 世纪对热力学的研究类似。那时,人们甚至不知道什么是热:事实上人们仍然相信燃素说。但这并不妨碍人们进行科学实验。例如,玻意耳定律描述了在温度固定时压力与体积的关系。因此,通过有系统地设计实验,人们仍然学到了足够多的“定律”,这些定律指导了热机的发明/研究,从而改变了世界。


From my naive point of view, it is similar in large scale AI models. On one hand, we still don’t have reliable theory or models describing the behavior of large neural networks. On the other hand, systematical research start to tell us lots of valuable lessons, eg scaling law. (And having those systematical research is becoming an essential element for making constant progress at large scale.)

从我天真的观点看,大规模人工智能模型在很大程度上也类似。一方面,我们仍然没有可靠的理论或模型来描述大型神经网络的行为。另一方面,有系统的研究开始告诉我们许多有价值的经验,比如尺度定律。(而且拥有这些系统性研究正成为在大规模领域持续取得进展的一个重要要素。)


Why Anthropic, and why leaving?

为什么选择 Anthropic,又为什么离开?

Even though I left anthropic, I still view ant as (one of) the best place for physicists(maybe also other STEM background PhD) to start their journey in AI research. I joined anthropic on Oct.1st 2024, when we start to do research for the later called Claude 3.7 sonnet. After being a physicist for many years, it was so exciting to see your research getting impact on the frontier model capability immediately, and witnessing people’s way of interacting with AI changes as new capabilities emerge.

尽管我离开了 Anthropic,我仍然认为 Anthropic 是物理学家(也可能包括其他理工科背景博士)开始 AI 研究之旅的最佳去处之一。我在 2024年10月1日加入Anthropic,当时我们开始为后来被称为Claude 3.7 Sonnet的模型做研究。作为多年的物理学者,看到自己的研究立即对前沿模型能力产生影响,并目睹随着新能力出现人们与AI互动方式的改变,令我感到非常兴奋。
点个赞吧!您的鼓励让我们进步     无评论不新闻,发表一下您的意见吧
注:
  • 新闻来源于其它媒体,内容不代表本站立场!
  • 在此页阅读全文
    猜您喜欢:
    您可能也喜欢:
    我来说两句:
    评论:
    安全校验码:
    请在此处输入图片中的数字
    The Captcha image
    Terms & Conditions    Privacy Policy    Political ADs    Activities Agreement    Contact Us    Sitemap    

    加西网为北美中文网传媒集团旗下网站

    页面生成: 0.0378 秒 and 4 DB Queries in 0.0088 秒